Меню

 

 

1 1
Словарь
1 1
1 1
Атлас
1 1
 Книги

Материаловедение в ортопедической стоматологии (учебно-методическое пособие).

7.Cтоматологический фарфор


                                                                                                            
Фарфор - керамический продукт, получаемый в результате обжига фар­форовой массы, приготовленной из основных компонентов - каолина, по­левого шпата, кварца и красителей.
Фарфор относится к группе материалов, представляющих собой смесь, содержащую глинистые вещества (слово «керамический» происходит от греч. «керамос» - горшечная глина). В этой смеси каолин как глинистый материал играет главную роль связующего вещества, скрепляющего час­тицы наполнителя - кварца. Оба эти вещества образуют твердую основу фарфора, отдельные зерна которого цементируются во время обжига третьим элементом - полевым шпатом.
Современный стоматологический фарфор является результатом совер­шенствования твердого, т.е. бытового декоративного фарфора.

Содержание исходных компонентов в бытовых и стоматологических фарфоровых массах:

Исходный компонент

Бытовой фарфор
(твердый),%

 Стоматологические фарфоровые массы,
%

Полевой шпат

10-25

50-81

Кварц

14-35

15-30

Каолин

35-70

0-4

Металлические пиг­менты

1

<1

 По химическому составу стоматологические фарфоровые массы стоят между твердым фарфором и обычным стеклом.
По своему назначению фарфоровые массы являются исходным материа­лом для:

  • заводского изготовления стандартных искусственных зубов;
  • заводского изготовления стандартных фарфоровых коронок и загото­вок для фарфоровых вкладок;
  • индивидуального изготовления фарфоровых коронок в условиях зубо­технической лаборатории;
  • индивидуального изготовления вкладок в условиях зуботехнической лаборатории;
  • облицовки цельнолитых каркасов металлических несъемных зубных протезов (коронок, мостовидных протезов).

 

1.Характеристика компонентов фарфоровых масс



КАОЛИН - белая или светлоокрашенная глина, которой содержится в фарфоровой массе от 3 до 65%. При этом чем больше в смеси каолина, тем меньше прозрачность и тем выше температура обжига фарфоровой массы. Основной частью каолина (99%) является алюмосиликат - каоли­нит. Температура его плавления равна 1800°С. При увеличении содержа­ния каолина повышается температура обжига фарфоровой массы. Као­лин оказывает влияние на механическую прочность и термическую стой­кость фарфора.
ПОЛЕВОЙ ШПАТ - это безводные алюмосиликаты калия, натрия или кальция. Температура плавления его равна 1180-1200°С. При высокой температуре полевой шпат обеспечивает развитие стекловидной фазы, в которой растворяются и другие компоненты (кварц, каолин). Стекловид­ные фазы придают пластичность массе во время обжига и связывают со­ставные части. Полевой шпат создает блестящую глазурованную по­верх­ность зубов после обжига. При расплавлении он превращается в вяз­кую аморфную стеклоподобную массу. Чем больше в смеси полевого шпата (и кварца), тем прозрачнее фарфоровая масса после обжига.
При обжиге фарфоровой массы полевой шпат как более легкоплавкий компонент, понижает температуру плавления смеси. В этой связи его рас­сматривают в роли плавня (флюса). Содержание полевого шпата в фар­форовой смеси достигает 60-70%. Полевой шпат, чаще калиевый, на­зы­вают микроклином или ортоклазом - в зависимости от структуры. Ор­ток­лаз - основной материал для получения стоматологической фарфоро­вой массы. Натриевый полевой шпат называется альбитом, кальциевый - анортитом.
КВАРЦ - минерал, ангидрит кремниевой кислоты. Кварц тугоплавок, температура его плавления составляет 1710°С. Он упрочняет керамическое изделие, придает ему большую твердость и химическую стойкость. Кварц уменьшает усадку и снимает хрупкость изделия. В про­цессе обжига кварц (кремнезем) увеличивает вязкость расплавленного полевого шпата. Однако при большом содержании кварца масса стано­вится зернистой, а температура плавления увеличивается. При темпера­туре 870-1470°С кварц увеличивается в объеме на 15,7%, в результате чего снижается усадка фарфоровой массы. В состав фарфоровой массы для изготовления зубов кварц вводят в количестве 25-32%.
КРАСИТЕЛИ окрашивают фарфоровые массы в различные цвета, свойст­венные естественным зубам. Обычно красителями являются окислы ме­таллов (двуокись титана, окиси марганца, хрома, кобальта, цинка и др.).
ПЛАВНИ (флюсы) - вещества, понижающие температуру плавления фар­форовой массы (карбонат натрия, карбонат кальция и др.).

ПЛАСТИФИКАТОРЫ - в фарфоровых массах, не содержащих као­лин. Роль пластификаторов выполняют органические вещества (декстрин, крахмал, сахар), которые полностью выгорают при обжиге.
АНИЛИНОВЫЕ КРАСКИ - для облегчения моделирования фарфоро­вых зу­бов порошки массы подкрашивают анилиновыми красками, кото­рые, как и органические пластификаторы, полностью выгорают при об­жиге фар­фора.

 

Основные свойства стоматологического фарфора

   Физические свойства: Стоматологические фарфоры близки к стек­лам, структура их изотропна. Они представляют собой переохлажден­ные жидкости и вследствие высокой вязкости могут со­хранять стекло­образное изотропное состояние при охлаждении без за­метной кристал­лизации.
Стоматологические фарфоры могут переходить при размягчении или отвердении из твердого в жидкое состояние (и обратно) без образова­ния новой фазы.
Стекла не имеют собственной температуры плавления, а характеризу­ются интервалом размягчения. Фарфор образуется в резуль­тате слож­ного физико-химического процесса взаимодействия компонен­тов фар­форовой массы при высокой температуре. Так, при температуре 1100-1300°С калиевый шпат превращается в калиевое полевошпатное стекло. Каолин и кварц имеют более высокую температуру плавления, чем по­левой шпат. Однако в расплаве полевошпатного стекла каолин и кварц взаимодействуют со стеклом. При этом каолин образует игольча­тые кристаллы муллита, пронизывающие всю массу фарфора. Частицы кварца оплавляются, теряют игольчатую форму, и небольшое их коли­чество переходит в расплав стекла.
Многочисленными микроскопическими исследованиями установлены следующие основные структурные элементы фарфора:
1.стекловидная изотропная масса, состоящая из полевошпатного стекла с различной степенью насыщения;
2.нерастворившиеся в стекле оплавленные частицы кварца;
3.кристаллы муллита, распределенные в расплаве кремнеземполевош­патного стекла;
4.поры.
Стекловидная изотропная масса в современных стоматологических фарфорах составляет их основную массу. Она обуславливает их качества и свойства. Количество стеклофазы возрастает при  повы­шении тем­пературы плавления и увеличения времени плавки. Соотно­шение кри­сталлической и стекловидной фаз определяет физические свойства фар­фора. Содержание стеклофазы в фарфоровых массах обес­печивает их блеск и прозрачность. Завышенная температура обжига приводит к по­явлению на поверхности  изделия чрезмерного блеска и мелких пу­зырь­ков.   При чрезмерном увеличении стеклофазы проч­ность фарфора уменьшается.
Нерастворившиеся в полевошпатном стекле частицы кварца вместе с кристаллами муллита и глинозема образуют скелет фарфора. Важным фактором в строении фарфора являются поры. Наибольшую пористость (35-45%) материал имеет перед началом спекания.
По мере образования стекловидной фазы пористость снижается. При этом повышается плотность материала и, соответственно, сокращаются размеры изделия. Полному уничтожению пор мешают заключенные в них пузырьки газов, образующихся в результате физико-химического взаимодействия отдельных компонентов массы. Высокая вязкость поле­вошпатного стекла мешает удалению газовых пузырьков из фарфоро­вого материала, чем обуславливается образование закрытых пор.

Современный стоматологический фарфор по температуре обжига клас­сифицируется как тугоплавкий (1300-1370°С), среднеплавкий (1090-1260°С) и низкоплавкий (870-1065°С).

   Состав тугоплавкого, среднеплавкого и низкоплавкого фарфора (%)

 

полевой шпат

кварц

 каолин

Тугоплавкий

81

15

4

Среднеплавкий

61

29

10

Низкоплавкий

60

12

28

   Тугоплавкий фарфор обычно используется для фабричного изготовле­ния искусственных зубов для несъемных протезов.
   Среднеплавкие и низкоплавкие фарфоры применяются для изготовле­ния коронок, вкладок и мостовидных протезов. Использование низко­плавких и среднеплавких фарфоров позволило применять печи для об­жига с нихромовыми и другими нагревателями.

   Оптические свойства фарфора являются одним из главных достоинств искусственных зубов. Коронка естественного зуба просве­чи­вает, но не прозрачна, как стекло. Это объясняется тем, что наряду с аб­сорб­цией света прозрачность выражается соотношением диффузно рас­сеян­ного и проходящего света. Свет, состоящий из волн разной длины, попадая на поверхность зуба, может поглощаться, отражаться и прелом­ляться. Короткие волны отражаются от эмали режущего края зуба, создавая голубоватый оттенок. Длинные волны, проходя через срединную часть зуба, содержащую основную массу твердых тканей, отражаясь и пре­ломляясь, образуют множество цветных оттенков от желто-оранжевого до голубого. В пришеечной части эмаль резко утончается. Этот участок имеет цвет от желто-оранжевого до коричневого. Стоматологический фарфор также является гетерогенным по структуре материалом.
Оптический эффект фарфора близок к таковому естественных зубов в тех случаях, когда удается найти правильное соотношение между стек­лофазой и замутнителями фарфора. Обычно этому мешает большое ко­личество воздушных пор и замутняющее действие кристаллов. Умень­шение кристаллических включений приводит к повышению деформа­ций изделия во время обжига и понижению прочности фарфора. Такой путь повышения прозрачности имеет определенный предел.
Второй путь увеличения прозрачности стоматологического фарфора заключается в уменьшении размера и количества газовых пор. До об­жига суммарный объем воздушных включений сконденсированной фар­форовой кашицы составляет 20-45%.

   Для уменьшения газовых пор предложено 4 способа:

  • Обжиг фарфора в вакууме. При этом способе воздух удаляется раньше, чем он успевает задержаться в расплавленной массе.
  • Обжиг фарфора в диффузном газе (водород, гелий), когда обычную атмосферу печи заполняют способным к диффузии газом (метод не­пригоден на практике).
  • Обжиг фарфора под давлением 10 атм. Если расплавленный фарфор охлаждать под давлением, то воздушные пузырьки могут умень­шиться в объеме, и их светопреломляющее воздействие значительно ослабевает. Давление поддерживают до полного охлаждения фар­фора. Этот способ еще применяют на некоторых заводах для произ­водства искусственных зубов. Недостаток метода состоит в невоз­можности повторного разогрева и глазурирования под атмосферным давлением, т.к. пузырьки газа восстанавливаются при этом до перво­начальных размеров.
  • При атмосферном обжиге для повышения прозрачности фарфора ис­пользуется крупнозернистый материал. При обжиге такого фарфора образуются более крупные поры, но количество их значительно меньше, чем у мелкозернистых материалов.

   Из указанных выше четырех способов наибольшее распространение получил вакуумный обжиг, который применяется в настоящее время как для изготовления протезов в зуботехнических лабораториях, так и на за­водах для производства искусственных зубов. Фарфор,  обжигаемый в вакууме, имеет в 60 раз меньше пор, чем при атмосферном об­жиге.
При обжиге фарфоровых масс усадка составляет 20-40%. Причинами такой усадки являются:
·недостаточное уплотнение (конденсация) частичек керамической массы;
·потеря жидкости, необходимой для приготовления фарфоровой ка­шицы;
·выгорание органических добавок (декстрин, сахар, крахмал, анилино­вые красители).

   Большое практическое значение имеет направление усадки. Усадка может быть:
·в направлении большего тепла;
·в направлении силы тяжести;
·в направлении большей массы.

   В первом и втором случаях усадка незначительна, т.к. в современных печах гарантировано равномерное распределение тепла, а сила тяжести невелика. Усадка в направлении больших масс значительно выше. Масса в расплаве ввиду поверхностного натяжения и связи между час­тицами стремится принять форму капли. При этом она подтягивается от периферических участков (т.е. от шейки коронки, например) к централь­ной части коронки (к большей массе фарфора), что, в конеч­ном счете может привести к появлению щели между искусственной фарфоровой коронкой и уступом модели препарированного зуба.

   Прочность фарфора зависит от рецептуры (состава компонентов) фар­форовой массы и технологии производства. Основными показателями прочности фарфора являются:
·прочность при растяжении;
·прочность при сжатии;
·прочность при изгибе.
Большое влияние на прочность оказывает метод конденсации части­чек фарфора.

 Существует четыре метода конденсации:
·электромеханической вибрацией;
·коронковой кистью;
·методом гравитации (без конденсации) ;
·рифленым инструментом.

Большинство исследователей считают, что наилучшего уплотнения фарфоровой массы можно достигнуть рифленым инструментом с после­дующим применением давления фильтровальной бумагой при    отсасывании жидкости.

Среди технологических условий, которые существенно влияют на прочностные показатели, необходимо отметить следующие:
·необходимое уплотнение материала, т.е. конденсация частичек фар­фора;
·хорошее просушивание массы перед обжигом;
·оптимальное (как правило не более 3-4) количество обжигов;
·проведение обжига при адекватной для данной массы температуре;
·время обжига;
·способ применения вакуума при обжиге;
·глазурирование поверхности протеза.

   Лучшие сорта стоматологического фарфора при соблюдении опти­мальных режимов изготовления имеют прочность при изгибе 600-700кг/см2. Подобная прочность стоматологического материала является недостаточной. Поэтому условно можно выделить, как минимум, два основных направления в поиске путей повышения прочности фар­фора:

  • за счет новых технологий обжига, включая и разработку соответст­вующего оборудования и инструментария;
  • за счет изменения рецептуры фарфоровой массы.

Так, например, введение в стекло или фарфор кристаллических части­чек высокой прочности и эластичности, имеющих одинаковый коэффи­циент термического расширения со стеклом или фарфором, приводит к значительному повышению прочности. При этом ее увеличение проис­ходит пропорционально росту кристаллической фазы. Кварц добавляют в фарфор как краситель кристаллической фазы. Частички кварца хо­рошо соединяются со стеклом основного вещества,  но коэффициент  терми­ческого расширения  у них разный. При охлаждении вокруг кристаллов кварца возникают зоны напряжения, которые хорошо видны под поля­ризационным микроскопом. Трещины в фарфоре, уси­ленном кварцем, проходят по зонам напряжения, минуя кристаллы.
Добавление частичек оксида алюминия к некоторым сортам фарфора, т.е. использование глиноземного  (алюмооксидного) фарфора, приводит к увеличению механической прочности сплавленного  оксида алюминия равна 2000°С. Температура обжига алюмооксидного фарфора состав­ляет 1650-1750°С. Снижение температуры обжига достигается введе­нием в оксид алюминия других минеральных веществ.

 

Помощь проекту

sms.копилка

Желающие материально помочь сайту, могут бросить монетку в WM копилку(желтая карточка) или отправить смс с пожеланием (синяя).

Деньги будут потрачены на развитие сайта. Заранее благодарен!

 

1 1
Рейтинги
Rambler's Top100
1 1

 

1 1
Поиск

Найти:

__на__

 
1 1
Новости
Ссылки

 

e-dentworld

Zub

Stomatolog.ru

rsp

1

 

©2007 Smilelink. Все права защищены. По всем вопросам обращаться по smilelink@ya.ru
Hosted by uCoz